
Attribute Data and Tables

Topics

- Databases and database management system
- SQL (Structured Query Language)
- Join and relate

GIS Databases

• GIS databases store attributes and locations

Database and DBMS

- Databases store data
- Database Management System (DBMS)
 - Software just like ArcGIS
 - Manage primarily attribute data
 - Commercial DBMS
 - Oracle, Microsoft Access, SQL Server, DB2
- What can DBMS do?
 - Store data and relationships among data (modeling and storage)
 - Provide fast and efficient access to large amounts of data (retrieval/ query)
 - Update, modify and transform data (manipulation)
 - Support multiple users with different levels of access privileges (access control)

Relational Databases

- Flat files and early DBMS
 - Flat files (redundancy & relationships)
 - Hierarchical databases
 - XML ...
 - Network databases
- Relational DBMS (RDBMS)
 - Both data and relationships are stored as tables (everything is a table)
 - Built on solid mathematical foundation (relational algebra)
 - Easy to query
 - Relatively easy to create and maintain

Flat File

Data in a "text" or other lightly formatted file.

Little structure, crossreferencing or linking among entries.

Often in a row/column format

Advantages: Transparent, easily transportable

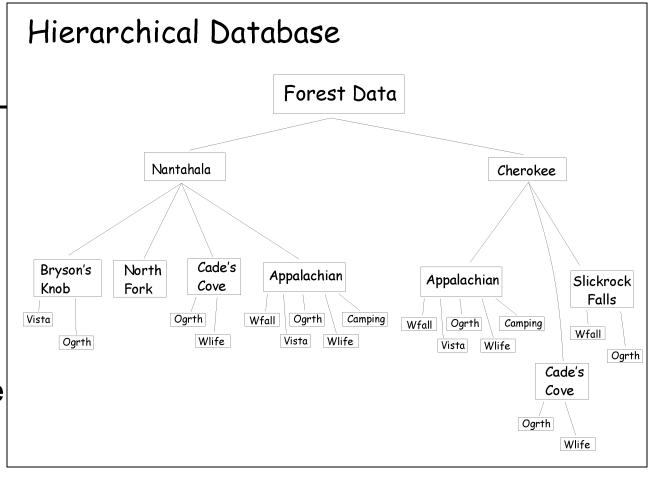
Disadvantages: Little structure, few error safeguards

Forests

Forest Name	Location	Size
Nantahala	North Carolina	184,447
Cherokee	North Carolina	92,271

Trails

Trail Name	Difficulty	Forest	Feature
Bryson's Knob	E, M	Nantahala	Vista, Ogrth
Slickrock Falls	Μ	Cherokee	Wfall, Ogrth
North Fork	Μ	Nantahala	-
Cade's Cove	E	Cherokee,	Ogrth, Wlife
		Nantahala	
Appalachian	M, D	Nantahala,	Wfall, Ogrth,
		Cherokee	Vista,
			Wlife, Cmp

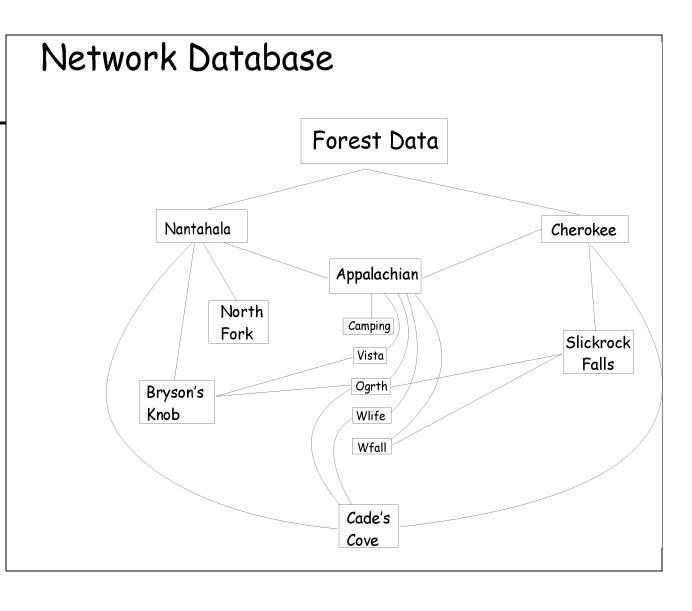

Recreation Features

Feature	Description	Activities
Wfall	Waterfall	Photography, Swimming
Ogrth	Old-Growth Forest	Photography, Hiking
Vista	Scenic overlook	Photography, viewing
Wlife	Wildlife Viewing	Photography, Birding
Cmp	Camping	Camping

Data organized with parent-child connections in a tree-like structure

Branches group successively more similar data

Advantages: Logical structure, quick searches for related items



Disadvantages:

Significant effort required to create the tree structure. Slow searches across branches Data elements connected in a cross-linked structure

Advantages: Quick searches, reduced (often no) duplication.

Disadvantages: Significantly complex structuring – maintenance is difficult

Relational Database

Minimal rowcolumn structure

Items/records with specified domains (possible values)

Advantages: Minimum structure, easy programming, flexible

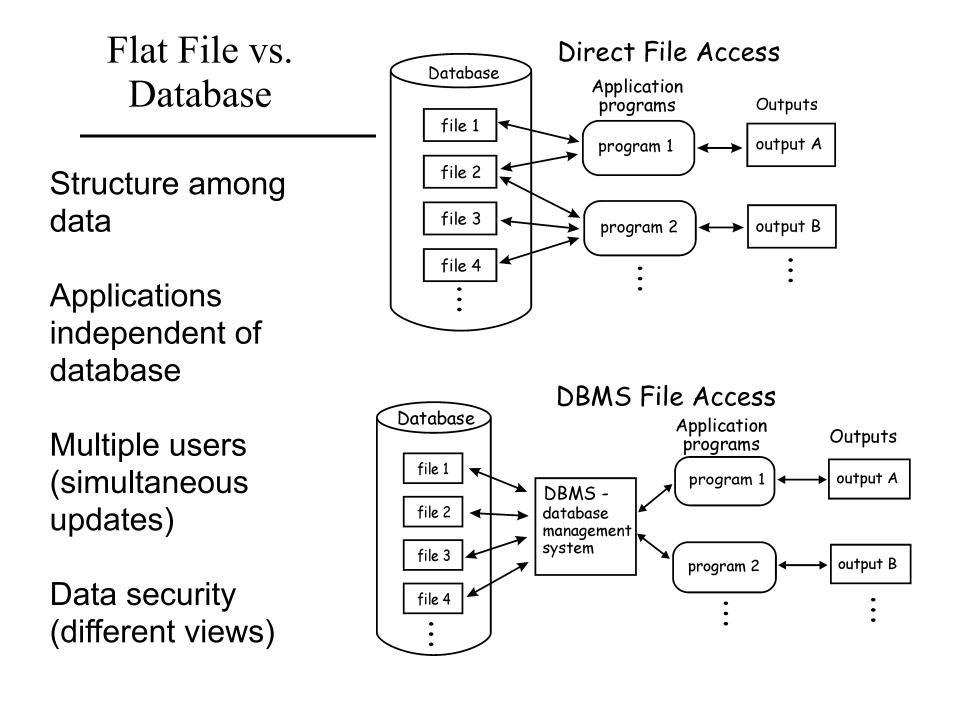
Forests

1016313			
Forest Name	Forest-ID	Location	Size
Nantahala	1	N. Carolina	184,447
Cherokee	2	N. Carolina	92,271

Trails

11 4113	
Trail Name	Forest-ID
Bryson's Knob	1
Slickrock Falls	2
North Fork	1
Cade's Cove	1
Cade's Cove	2
Appalachian	1
Appalachian	2

Recreational features


Feature	Description	Activity1	Activity2
Wfall	Waterfall	Photography	Swimming
Ogrth	Old-Growth Forest	Photography	Hiking
Vista	Scenic Overlook	Photography	Viewing
Wlife	Wildlife Viewing	Photography	Birding
Cmp	Camping	Camping	-

Characteristics

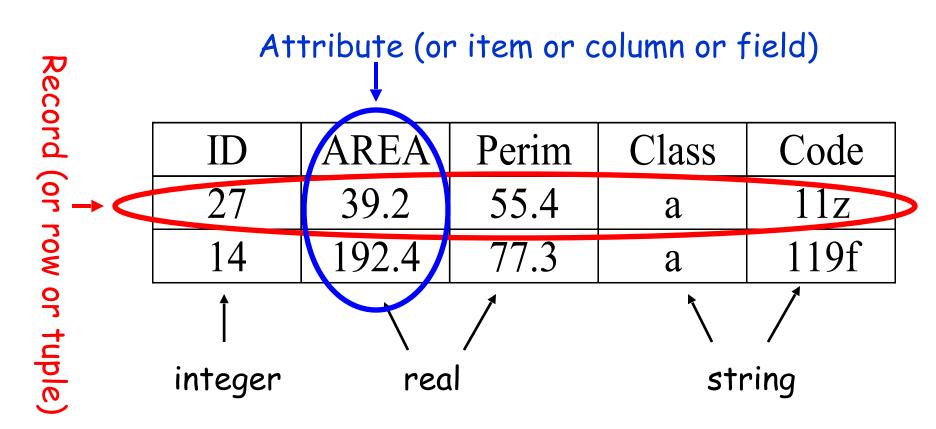
Trail Name	Feature	Difficulty
Bryson's Knob	Vista	E,M
Bryson's Knob	Ogrth	E,M
Slickrock Falls	Ogrth	M
Slickrock Falls	Wfall	M
North Fork	-	M
Cade's Cove	Ogrth	E
Cade's Cove	Wlife	E
Appalachian	Wfall	M,D
Appalachian	Ogrth	M,D
Appalachian	Vista	M,D
Appalachian	Wlife	M,D
Appalachian	Cmp	M,D

Disadvantages:

Relatively slow, a few restrictions on attribute content

Tables

- Data in a database are organized as tables
- Each table have a **unique name**
- A database typically has many tables


ID	Name	Major
100	Sam	Geography
200	Kevin	Economics
300	Steve	Computer Science

Classes

Students

ID	Name	Department
10000	Introductory GIS	Geography
20000	Macroeconomics	Economics
30000	Programming Language	Computer Science

Table Elements and Terms

A table (or *relation*) is a **set** of **tuples**

A field has a type and domain that restrict the values it may have

Main Functions of RDBMS

- Query / Selection
 - Choosing a subset of records and attributes which meet certain conditions
- Join
 - associate data in two tables
- Sort and calculate statistics

Structured Query Language (SQL)

- A language used to retrieve data from relational databases
- Most databases understand standard SQL
- SQL queries generally return results as a table, just like the tables that store the original data

The SELECT Command in SQL

- SELECT *column(s)* FROM *table(s)* WHERE conditions
- SELECT * FROM KansasCountyTable WHERE POP2000 > 200000

OID	NAME	POP2000	WHITE	BLACK	AMERI_ES	ASIAN	HAWN_PI	
9′	Allen	14385	13637	234	112	38	0	1
10'	Anderson	8110	7900	26	60	18	2	
89) Atchison	16774	15369	893	93	57	10	
39) Barber	5307	5151	20	31	5	0	
11	Barton	28205	26225	323	145	66	3	
92	2 Bourbon	15379	14466	474	129	56	7	
88	Brown	10724	9316	167	946	22	1	١.
l es	Rutlar	50/82	56471	<u>910</u>	5/1	220	10	l. I

	OID	NAME	POP2000	WHITE	BLACK	AMERI_ES	ASIAN	HAWN_P
Þ	104	Johnson	451086	410990	11780	1481	12768	15
	41	Sedgwick	452869	359489	41367	5041	15137	26
<								

The WHERE Clause

• SELECT * FROM KansasCountyTable WHERE POP2000 < 3000 AND AGE_65_UP > AGE_5_17

I Attributes of KansasCountyTable										
	OID	NAME	POP2000	WHITE	BLACK	AMERI_ES	ASIAN	HAWN_PI	^	
	91	Allen	14385	13637	234	112	38	0		
	101	Anderson	8110	7900	26	60	18	2	-	
	89	Atchison	16774	15369	893	93	57	10		
	39	Barber	5307	5151	20	31	5	0		
	11	Barton	28205	26225	323	145	66	3		
	92	Bourbon	15379	14466	474	129	56	7		
	88	Brown	10724	9316	167	946	22	1		
	68	Butler	50/87	56A74	<u>810</u>	5/1	220	10		
<								>		

Record: 14 4

0

Selected Attributes of KansasCountyTable

	OID	NAME	POP2000	WHITE	BLACK	AMERI_ES	ASIAN	HAWN_PI	
E	- 38	Clark	2390	2289	6	27	2	0	
	40	Comanche	1967	1927	1	5	1	4	
	28	Graham	2946	2796	95	10	8	1	
	22	Lane	2155	2106	0	1	2	1	
	76	Rawlins	2966	2922	9	9	3	0	
	Re	cord: 🖬 🖣	1 🕨	∙ I Sł	now: All	Selected	Record	ls (5 out 👤	

Expressions

- Conditions are formed as expressions in the WHERE clause in SQL
 - WHERE POP2000 < 3000 AND AGE_65_UP > AGE_5_17
- A simple expression consists of two operands and one logical operator
 - [Operand] [Logical Operator] [Operand]
- An operand can be
 - A field/column
 - A constant (number or string)
- A logical operator can be any of the followings:

-=,>,<,<>,>=,<=

Like (for using wildcards (%, *, ?) in strings)

Simple Expression

• Where Area > 20.0

Area > 20.0

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330.3	Farm	County
3	2.4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4.4	Urban	County

Complex Expressions

- A complex expression is a set of expressions connected by Boolean connectors
- Boolean connectors are
 - AND, OR (binary connector)
 - NOT (unitary connector)
- Find the counties whose 2000 population is greater than 30,000 and median house income is less than 25,000
 - WHERE (pop2000 > 30000) AND (medhine < 25000)</p>
 - 'pop2000' and 'medhinc' are fields in the population table

Boolean Connectors—AND, OR

- Where landuse = 'urban' AND Municip = 'City'
- Where landuse = 'urban' OR Municip = 'City'

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330.3	Farm	County
3	2.4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4.4	Urban	County

AND typically <u>decreases</u> the number of records selected OR typically <u>increases</u> the number of records selected

Boolean Connectors--NOT

- WHERE NOT (landuse = 'urban')
- WHERE landuse <> 'urban'

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	2 330.3		County
3	2.4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4.4	Urban	County

Complex Expression

[(Landuse = Urban) AND (Mill Rate = B)] OR {NOT(Municip = City) AND (Density > 200)}

ID	Area	Landuse	Municip	Density	Mill Rate
1	10.5	Urban	City	1,112.2	А
2	330.3	Farm	County	1.9	С
3	2.4	Suburban	Township	237.5	С
4	96.0	Suburban	County	98.1	А
5	22.1	Urban	City	916.2	В
6	30.2	Farm	Township	3.7	А
7	4.4	Urban	County	153.8	D

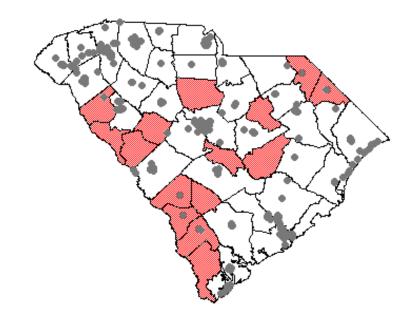
Connector's Order Is Important

• NOT (A and B) is not the same as NOT (A) AND NOT (B)

NOT [(Landuse = Urban) AND (Municip = County)]

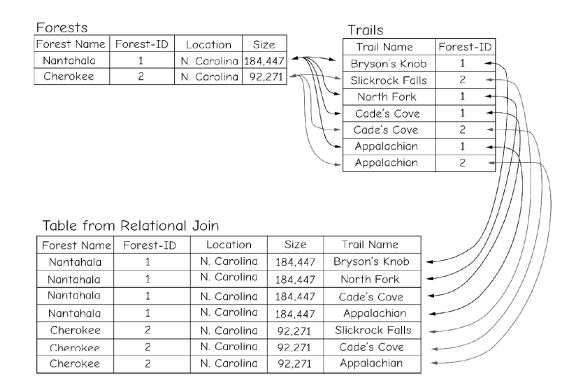
ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330,3	Farm	County
3	2,4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4,4	Urban	County

[NOT (Landuse = Urban)] AND [NOT (Municip = County)]

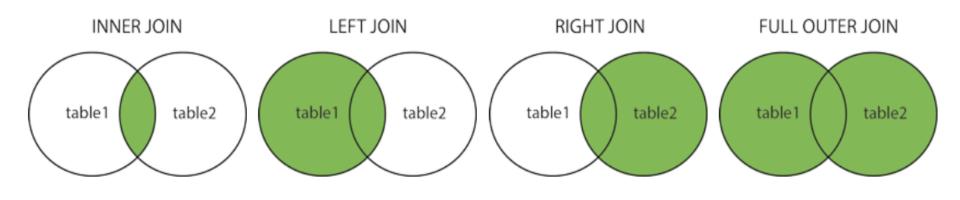

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330,3	Farm	County
3	2,4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4,4	Urban	County

Select By Attributes	Query Wizard	Query in ArcGIS
''FID'' ''AREA'' ''PERIMETER'' ''CNTYSGEN_'' ''CNTYSGEN_I'' ''CNTYSGEN_I'' ''FIPC'' ''CNTYNAME'' ''POP1990'' ''POP2000'' ''MEDHHINC'' SQL Info SELECT * FROM counties WHERE: ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME'' ''CNTYNAME''	Inique values: Newberry' 'Oconee' 'Orangeburg' 'Pickens' 'Richland' 'Saluda' 'Spartanburg' 'Sumfer' Complete List Complete List	Create a new selection Add to current selection Remove from current selection Select from current selection Selection set – all the features in the table. Selection set—the set of selected features from previous queries Queries can be performed from Whole set (all the features in the table) Selection set (features in the selection set) Query results can be Appended to the selection set Removed from the selection set A new selection set (previous selection set is discarded)
Apply	Close	

Query in GIS


- Attribute queries highlight the selected records instead of creating a new table
- Corresponding features are also highlighted on maps.
- Other types of queries:
 - Spatial queries and compound queries

🍭 Attrib	outes	of Cntysgen			- 🗆 ×
Shape	Fipo	Entyname	- Pop1990	Fap2000	Medhhii
Polygon	69	Marlboro	29361	30279	1806
Polygon	55	Kershaw	43599	49946	2828;
Polygon	39	Fairfield	22295	22688	2148
Polygon	31	Darlington	61851	68346	2264;
Polygon	1	Abbeville	23862	24611	2317
Polygon	47	Greenwood	59567	63971	2358
Polygon	61	Lee	18437	19009	1817
Polygon	41	Florence	114344	130492	2426
Polygon	67	Marion	33899	37001	1782!
Polygon	79	Richland	285720	315896	2884
Polygon	63	Lexington	167611	215232	3291
Polygon	85	Sumter	102637	113882	2238'
<u>ا</u>			40075		


Join Tables

- Relational databases organize data in ways that reduce duplication
- Select and combine rows from two tables based on *a common field* as long as *a certain condition* on the common field satisfies

Join Tables

- (INNER) JOIN: Returns rows that have matching values in both tables
- LEFT (OUTER) JOIN: Returns all rows from the left table, and the matched rows from the right table
- RIGHT (OUTER) JOIN: Returns all rows from the right table, and the matched rows from the left table
- FULL (OUTER) JOIN: Returns all rows when there is a match in either left or right table

left_join()

right_join()

inner_join()

full_join()

Inner Join

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

Table 1 - CUSTOMERS Table is as follows.

+		+		+		+		+		+
T	ID	T	NAME	I	AGE		ADDRESS	I	SALARY	
+		+		+		+		+		+-
T.	1	T	Ramesh	L	32	I	Ahmedabad	I	2000.00	
T	2	I	Khilan		25		Delhi	I	1500.00	
T.	3	T	kaushik	L	23	I	Kota	T	2000.00	
I.	4	I	Chaitali		25		Mumbai	I	6500.00	
I.	5	I	Hardik		27		Bhopal	I	8500.00	
I.	6	T	Komal	L	22		MP		4500.00	
L	7	I	Muffy		24		Indore		10000.00	

 Table 2 - ORDERS Table is as follows.

++	CUSTOMER_ID	
102 2009-10-08 00:00:00 100 2009-10-08 00:00:00 101 2009-11-20 00:00:00 103 2008-05-20 00:00:00	3 3 2	3000 1500 1560

		NAME			
+-		+	++		
	3	kaushik	3000	2009-10-08	00:00:00
	3	kaushik	1500	2009-10-08	00:00:00
	2	Khilan	1560	2009-11-20	00:00:00
	4	Chaitali	2060	2008-05-20	00:00:00
+-		+	++		

Left Join

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

Table 1 - CUSTOMERS Table is as follows.

+	+	++		++
ID			ADDRESS	SALARY
1		32	Ahmedabad	++ 2000.00 1500.00
1.1	i		Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00

Table 2 - ORDERS Table is as follows.

OID	DATE	CUSTOMER_ID	AMOUNT
102 100 101	2009-10-08 00:00:00 2009-10-08 00:00:00 2009-11-20 00:00:00 2008-05-20 00:00:00	3 3 2	3000 1500 1560

++ ID NAME	AMOUNT DATE
+++++ 1 Ramesh 2 Khilan 3 kaushik 3 kaushik 4 Chaitali 5 Hardik 6 Komal 7 Muffy	3000 2009-10-08 00:00:00 1500 2009-10-08 00:00:00 2060 2008-05-20 00:00:00 NULL NULL

Right Join

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

Table 1 - CUSTOMERS Table is as follows.

+		+	++	+	++
T.	ID	NAME	AGE	ADDRESS	SALARY
+		+	++	+	++
T.	1	Ramesh	32	Ahmedabad	2000.00
I.	2	Khilan	25	Delhi	1500.00
I.	3	kaushik	23	Kota	2000.00
T.	4	Chaitali	25	Mumbai	6500.00
I.	5	Hardik	27	Bhopal	8500.00
I.	6	Komal	22	MP	4500.00
T	7	Muffy	24	Indore	10000.00

 Table 2 - ORDERS Table is as follows.

OID	DATE		CUSTOMER_ID	AMOUNT
102	2009-10-08	00:00:00	3	
100	2009-10-08	00:00:00	3	1500
101	2009-11-20	00:00:00	2	1560
	2008-05-20		4	

	+
	ushik 3000 2009-10-08 00:00:00
3 kaushik 1500 2009-10-08	ushik 1500 2009-10-08 00:00:00
2 Khilan 1560 2009-11-20	ilan 1560 2009-11-20 00:00:00
4 Chaitali 2060 2008-05-20	aitali 2060 2008-05-20 00:00:00

Full Join

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS FULL JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

Table 1 - CUSTOMERS Table is as follows.

+-		+	++		++
I.	ID	NAME	AGE	ADDRESS	SALARY
+-		+	++		++
T	1	Ramesh	32	Ahmedabad	2000.00
T	2	Khilan	25	Delhi	1500.00
T	3	kaushik	23	Kota	2000.00
I.	4	Chaitali	25	Mumbai	6500.00
T	5	Hardik	27	Bhopal	8500.00
	6	Komal	22	MP	4500.00
T	7	Muffy	24	Indore	10000.00

Table 2 - ORDERS Table is as follows.

OID	DATE	CUSTOMER_ID	AMOUNT
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060

+	 D	NAME	AMOUNT DATE	+
+		+		+
	1	Ramesh	NULL NULL	
	2	Khilan	1560 2009-11	-20 00:00:00
	3	kaushik	3000 2009-10	0-08 00:00:00
	3	kaushik	1500 2009-10	0-08 00:00:00
	4	Chaitali	2060 2008-05	-20 00:00:00
	5	Hardik	NULL NULL	
	6	Komal	NULL NULL	
	7	Muffy	NULL NULL	
	3	kaushik	3000 2009-10	0-08 00:00:00
	3	kaushik	1500 2009-10	0-08 00:00:00
	2	Khilan	1560 2009-11	-20 00:00:00
	4	Chaitali	2060 2008-05	-20 00:00:00
+				+

Associating Tables

- Link/connect two tables by a common column
- Two ways:
 - Joins
 - Relates

Parcel (before Join)

			_			
OBJECTID*	SHAPE*	PARCEL_ID		ZONE_CODE*	SHAPE_Length	SHAPE_Area
1	Polygon	6750	8	601	512.602492	13042.492751
2	Polygon	6724	ŝ	601	372.992656	6203.424403
3	Polygon	6724	7	603	353.692046	5446.766292
4	Polygon	6725	8	603	313.013884	5380.550025

ZoneCodeDesc

Common fields: ZONE_CODE ZONE

Join or Relate Attribute Tables in ArcGIS

- Join operation
 - Combines two tables
 - E.g., cities and states

CITY_NAME	STAT	STATE_NAM		sta	ates		
Birmingham	01	Alabama	K	Г	STATE_NAME	POP1999	AREA
Mobile	01	Alabama 🔷 <			Alabama	4382953	51715.786
Montgomery	01	Alabama			Alaska	620685	576594.104
Huntsville	01	Alabama			Arizona	4790311	113712.679
Phoenix	04	Arizona			Arkansas	2557924	52913.232
Tucson	04	Arizona			California	33090214	157776.31
Fort Smith	05	Arkansas			Colorado	4049168	104101.231
Little Rock	05	Arkansas			>		
San Francisco	06	California					
Los Angeles	06	California	H				
		0.12					

- The two tables have a *common field*
- Join operation in ArcGIS
 - **append** the attributes of B (the source/from table) to the attributes of A (the target/to table), if the common field *is equal*
 - works only for a many-to-one (m:1) relationship ("m" on the target/to table)
 - 1:1 is a special case of m:1

Join Tables in ArcGIS

- The appending method will not work for the other direction
 - Cannot add new rows to a table as each row is a geographical feature!
- 1:m or m:n relations require the **relate** tool

CITY_NAME	STAT	STATE_NAM				
Birmingham	01	Alabama				
Mobile	01	Alabama 🔷				
Montgomery	01	Alabama				
Huntsville	01	Alabama				
Phoenix	04	Arizona				
Tucson	04	Arizona				
Fort Smith	05	Arkansas				
Little Rock	05	Arkansas				
San Francisco	06	California				
Los Angeles	06	California				
	00	0.00				

	states					
		STATE_NAME	POP1999	AREA		
$ \rightarrow $	\triangleright	Alabama	4382953	51715.786		
		Alaska	620685	576594.104		
		Arizona	4790311	113712.679		
		Arkansas	2557924	52913.232		
		California	33090214	157776.31		
		Colorado	4049168	104101.231		

Join Tables

- Join--append the attributes from one table (from table) onto another table (to table)
 - Based on a common field
 - The names of the common fields are NOT necessary the same
 - Based on the equal relationship
 - Attributes copied
- Cardinality of relationships (to:from)
 - Good for 1:1 and N:1

Join Attribute Tables in ArcMap

Join Data

Join lets you append additional data to this layer's attribute table so you can, for example, symbolize the layer's features using this data.

What do you want to join to this layer?

Join attributes from a table

population

1. <u>I</u>	Choose the field in this layer that the join will be based on:				
	STFID				

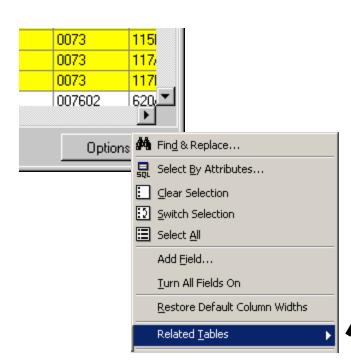
2. Choose the table to join to this layer, or load the table from disk:

.....

-

Ê

• |


- Show the attribute tables of layers in this list
- 3. Choose the field in the table to base the join on:

STFID	•
	Advanced
About Joining Data	OK Cancel

DouglasCensusTracts.COUNTY	population.OID	population.STFID	population.STATE	population.COUNTY	population
845		20045000100	20	045	
045	1	20045000200	20	045	
045	2	20045000300	20	045	
045	3	20045000400	20	045	
045	4	20045000501	20	045	
045	5	20045000502	20	045	
045	6	20045000601	20	045	
045	7	20045000602	20	045	
045	8	20045000701	20	045	
045	9	20045000702	20	045	
045	10	20045000797	20	045	
045	11	20045000801	20	045	
045	12	20045000802	20	045	
045	13	20045000901	20	045	
045	14	20045000902	20	045	
045	15	20045001001	20	045	
045	16	20045001002	20	045	
045	17	20045001201	20	045	
		1	i		>

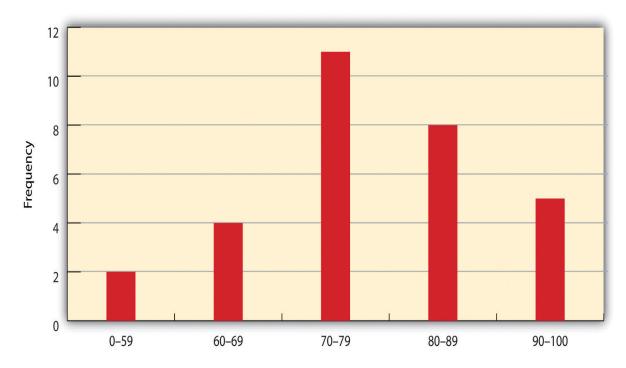
Relate Tables

- Relate rows in two tables using a common field
- Tables remain independent
- Additional cardinality choices
 - One-to-many (1:m)
 - many-to-many (m:n)

Attributes of Blocks						
	KEYFIELD			OBJECTID		
┢	06.071.0073 .101				1 F	
	06.071.0073 .111				2 F	
	06.071.		Attributes of	Blk_Dmg		
\vdash	06.071. 06.071.		OBJECTID *	STATEFP	CNTY	TRAC
	06.071.		12	06	071	0086
I₹			13	06	071	0073
			14	06	071	0078
Re	Record: 1		15	06	071	0078
			16	06	071	0078
			17	06	071	0078
	7	┛				
		Re	ecord: 🚺 🚺	1 🕨) N	Show: [

Sorting

🔳 Attr	ibutes of	F STATES
--------	-----------	-----------------



Calculate New Fields

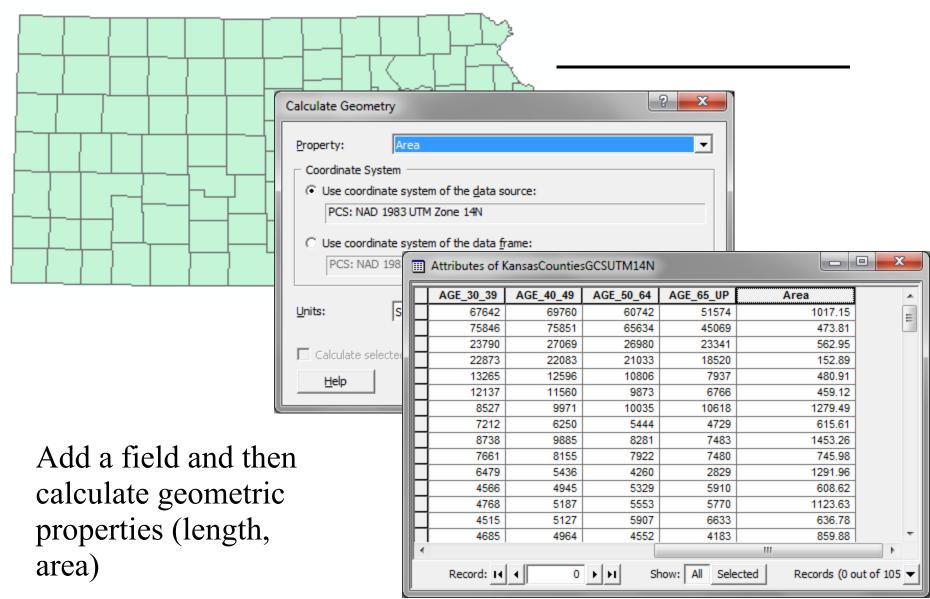
- Create a new field
 - MinorityPercentage = (Population White) / Population
- Descriptive statistics for numeric fields
 - Distribution: histogram
 - Central tendency: mean, median, mode
 - Dispersion: range, variance, standard deviation

Measures of Distribution

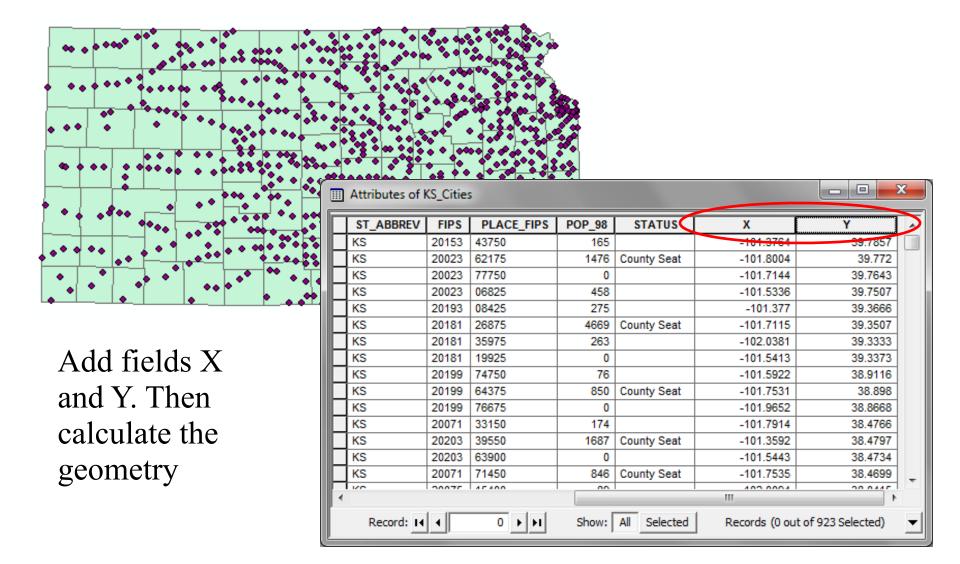
- Commonly illustrated using a histogram
- A summary of the frequency of values over the range of the dataset

Grades

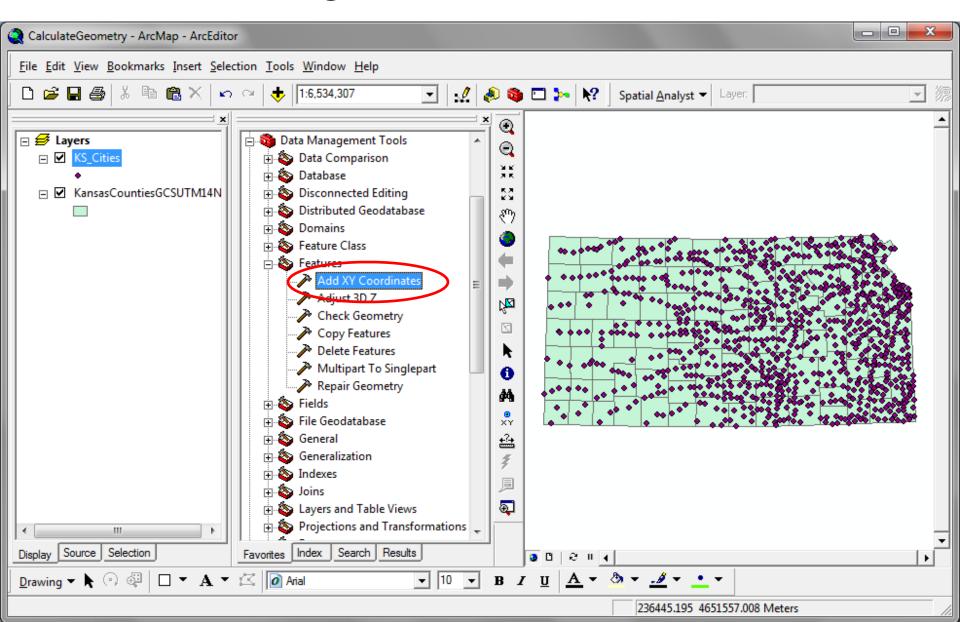
Measures of Central Tendency

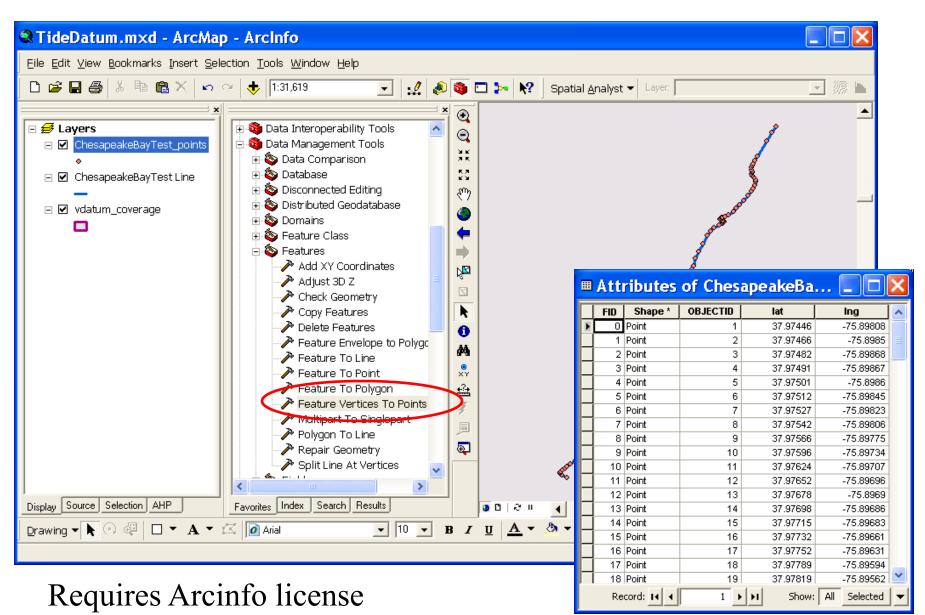

- Mean More commonly referred to as the average, is the most often used measure of central tendency
- Mode The mode is the measure of central tendency that represents the most frequently occurring value
- Median The value in the middle of the sorted values when there are an odd number of observations

Measures of Dispersion


- Describe the spread of data around the mean
- The simplest measure of dispersion is the range
 Max. value minus min. value
- Other measure of dispersion are the variance (*s*²) and standard deviation (s)

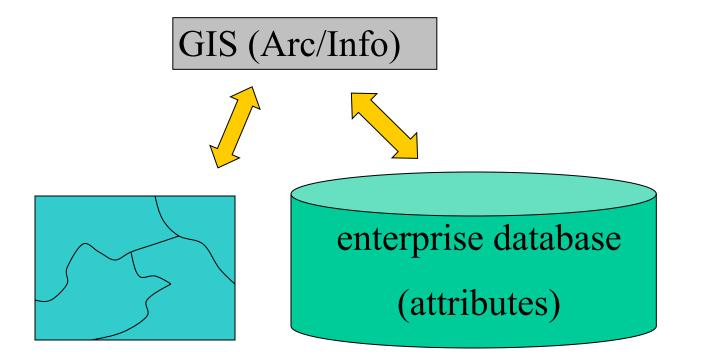
$$\mathbf{S}^{2} = \frac{\sum (\mathbf{x} \cdot \bar{\mathbf{x}})^{2}}{n}$$
 $\mathbf{S} = \sqrt{\frac{\sum (\mathbf{x} \cdot \bar{\mathbf{x}})^{2}}{n}}$


Calculating Feature Geometry Property


Getting Feature Coordinates

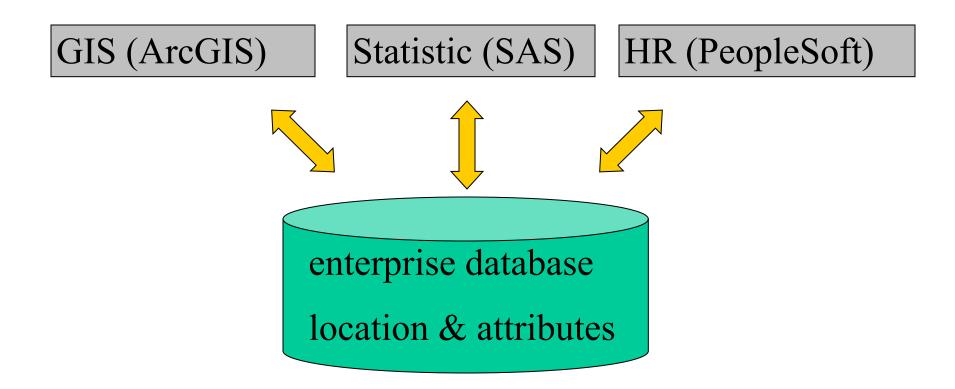
Getting Feature Coordinates

Getting Feature Coordinates



SQL and Relation Algebra

- Relational algebra (RA) consists of operators that manipulate tables in a relational database
- Relational operators
 - Restrict, project, union, intersection, difference, product, join, divide
- SQL is essentially built on relational algebra
- SQL queries are translated into sequence of relational operators


Old GIS Databases

• A hybrid system where locations are stored outside the relational database

Modern GIS Databases

• Both attributes and locations are stored inside a relational database

Multi-tiered Architecture

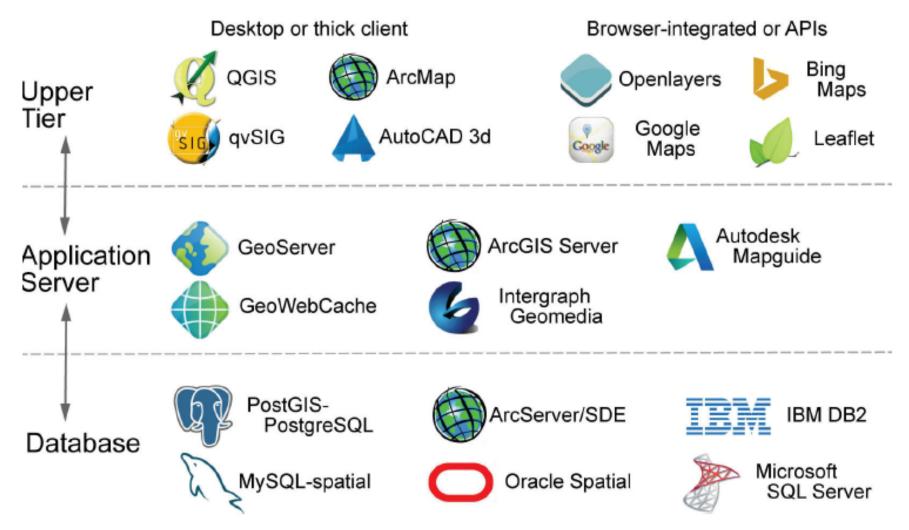


Figure 8-5: Multi-tiered architecture, and common software alternatives. Data are stored and accessed

Database

- Databases are significant infrastructures for many organizations
- Knowledge on database gives you an edge on finding GIS jobs
- Open source DBMS
 - PostgreSQL and PostGIS
 - MySQL
 - SpatialLite
- Commercial DBMS
 - Oracle Corporation (Oracle)
 - Microsoft Corporation (SQL Server)
 - IBM Corporation (DB2)
- GEOG 528, Spatial Databases