GEOG 358: Introduction to Geographic Information Systems Terrain Analysis

Topics

- Terrain Representations
- Terrain Analysis
- Reading
 - Chapter 11

Multiple Representations of Terrain

Raster DEM

Digital elevation model (DEM)

Terrain Analysis *can be performed* with multiple representations.

Digital Elevation Model (DEM)

Digital Surface Model (DSM)

Digital Terrain Model (DTM)

Improved DEM Resolution

• USGS from 30 m, 10 m, to 2 m

Global Coverage

- GTOPO30 (arc-seconds), SRTM 90 & 30 m, ASTER 30 m
- NGDC (NOAA) land topography and ocean bathymetry
 - ETOPO5, ETOPO2, ETOPO1 (1 arc-minute)

Terrain Visualization (Hillshade)

Difficult to see ridges

Calculate Hillshade Maps

brightness ~ cos (θ) Shadow—self vs. surrounding terrain

Hillshade			? 🗙
Input surface:	example	•	. 🖻
Azimuth:	315		
Altitude:	45		
🔲 Model shadows			
Z factor:	1		
Output cell size:	10		
Output raster:	<temporary></temporary>		2
	OK	C	ancel

Terrain Slope and Aspect

Slope and Aspect

- What are the slope and aspect at a point on a surface?
 - maximum rate of change (slope)
 - direction of the maximum rate of change (aspect)

@ 2010 Cnes/Spot Image; Image @2010 Province of British Columbia; @2010 Google

How to Calculate Slope and Aspect

MRC = $\sqrt{(\Delta z / \Delta x)^2 + (\Delta z / \Delta y)^2}$ MRC - Maximum Rate of Change $\Delta z / \Delta x$ - Rate of change in X Direction $\Delta z / \Delta y$ - Rate of change in Y Direction

$$\Delta z / \Delta x = (\mathbf{f} - \mathbf{d}) / (2 * \text{cell size})$$
$$\Delta z / \Delta y = (\mathbf{b} - \mathbf{h}) / (2 * \text{cell size})$$

Slope in GIS

- MRC is typically represented as an angle (in degrees) in GIS
 - SlopeInAngle = arctan (MRC)
 - Note that atan() usually returns angle in radians!
 - •1 radian = 180/pi degrees
- MRC can also be represented as a percentage =
 - (MRC) * 100

Calculate Slope Example

slope = atan {
$$[(0.45)^2 + (-0.15)^2]^{0.5}$$
}
= 25.3^o

Figure 11-6: Slope calculation based on cells adjacent to the center cell.

Calculate Slope as Math Algebra Operations

- Two focal operations with weighted neighborhoods
- Local operations

Calculate Aspect

- **Downhill direction** of the max rate of change
- Typically measured as the angle from North (clockwise) in geography and GIS [0, 360]

Viewshed

• The area on a surface visible from an observation point

Line-of-Sight

- A straight line connecting the observation point and the target point without interruption by terrain at any location in between.
- If a line-of-sight exists, the target point is visible from the observation point.

Input surface raster and observer features

Output raster

Viewshed Parameters in ArcGIS

AZIMUTH1

RADIUS1

Delineate Flow Direction, Stream Networks, and Watersheds from DEM

Determining Flow Direction

Figure 11-15: The D8 flow direction method (above left) assigns all flow to the cell center closest to the flow direction (cell 1), while the D-infinity method partitions the flow to the two cells nearest the flow direction, proportional to the flow direction angles (cells 1 and 2, above right).

Determine Discrete Flow Direction (D8)

⊢ 30 →					
67	56	49			
52	48	37			
58	55	22			

Slope:
$$\frac{67 - 52}{30} = 0.50$$

$$\frac{67 - 48}{30\sqrt{2}} = 0.45$$

Calculate Flow Direction Raster Layer

- Stores the direction that water *flows out of* each cell
- Each cell flows into one the neighbor which has the steepest descent slope
- Stores spatial relationship!

78	72	69	71	58	49
74	67	56	49	46	50
69	53	44	37	38	48
64	58	55	22	31	24
68	61	47	21	16	19
74	53	34	12	11	12

Elevation

2	2	2	4	4	8
2	2	2	4	4	8
1	1	2	4	8	4
128	128	1	2	4	8
2	2	1	4	4	4
1	1	1	1	4	16

Filling Sinks

- Sink (depression or pit)
 - One or a set of connected cells surrounded by higher elevation values
- Reasons having sinks
 - Natural depressions
 - Sampling effect
 - The rounding of elevations to integer numbers
- Must be filled to route water out of the sinks

Watershed Delineation

• Area (or cells) contributing water to an outlet cell

Watershed Delineation

Flow Accumulation

• The number of cells (or the size of the watershed) contributing water to a cell

0	0	0	0	0	0
0	1	1	2	2	0
0	3	7	5	4	0
0	0	0	20	0	1
0	0	0	1	24	0
0	2	4	7	35	1

Flow accumulation

Delineating Stream Networks

Delineating Stream Networks

- Applying a threshold value to flow accumulation
- Flow accumulation >= 200

Steps in Watershed and Stream Network Delineation from DEMs

- Condition DEM (filling sinks)
- Derive flow direction
- Calculate flow accumulation
- Delineate watershed
- Delineate stream network

Identify Stream Segments

- Assign a unique value to each segment of the raster stream network
- All cells in a stream segment are assigned the same value

Stream Segments

Watersheds for Stream Segments

